SYJC - MARCH 2016
MATHEMATICS

Ans. 1. (i) $\quad \mathrm{p} \rightarrow \mathrm{q}$
$=\sim p \vee q$
Dual : $\sim p \vee q$
Negation : $\sim p \vee q$
(ii) Given f is Continuous at $\mathrm{x}=2$

$$
\begin{array}{ll}
\therefore & \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \\
\therefore & \lim _{x \rightarrow 2^{-}}{ }^{x^{2}+5} \frac{\lim _{x \rightarrow 2^{+}}(k x+1)}{} \\
\therefore & \frac{4+5}{2-1} \quad=k(2)+1 \\
\therefore & 9=2 k+1 \\
\therefore & k=4
\end{array}
$$

(iii) ($5 x-4$) is polynomial function, hence is continuous for all $x € R$
$x^{2}-4$ is polynomial function, hence is continuous for all $x \in R$
Hence, $f(x)$ is a rational function and is continuous in the domain except where denominator $=0$
i.e when $x^{2}-4=0$
i.e $x^{2}=4 \quad$ i.e $x=+2$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous for all real values except at $\mathrm{x}=-2$ and $\mathrm{x}=2$
(iv) As given
$2\left[\begin{array}{cc}x & 5 \\ 7 & y^{-3}\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
$\therefore \quad\left[\begin{array}{cc}2 x & 10 \\ 14 & 2 y-6\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
$\therefore \quad\left[\begin{array}{cc}2 x+3 & 10-4 \\ 14+1 & 2 y-6+2\end{array}\right] \quad=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
$\therefore \quad\left[\begin{array}{cc}2 x+3 & 6 \\ 15 & 2 y-4\end{array}\right] \quad=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
Using equality of two matrices, we get

$$
\begin{array}{ll}
& 2 x+3=7 \\
\text { and } & 2 y-4=14 \\
\therefore & 2 x=4 \\
\therefore & x=2 \\
\text { and } & 2 y=18 \\
\therefore & y=9 \\
\therefore x= & 2 \text { and } y=9 \text { are the required values. }
\end{array}
$$

(v) Given line $y=x$

Required volume is
$\mathrm{V}=\pi \int_{a}^{b} y^{2} d x$
$=\pi \int_{0}^{4} x^{2 d x} \quad=\frac{\pi}{3}\left[x^{3}\right]_{0}^{4}$
$V=\frac{\pi}{3}\left[4^{3}-0\right]=\frac{\pi}{3}(64)$
\therefore Required volume is $\frac{64 \pi}{3}$ cubic units.

(vi) Given $x=\frac{2 t}{1+t^{2}}$ and $y=\frac{1-t^{2}}{1+t^{2}}$

Here t us the pafameter.
Put $\mathrm{t}=\tan \theta$, in both the expressions.

$$
\begin{array}{ll}
\therefore & x
\end{array} \begin{array}{ll}
& x \sin 2 \theta \\
& \therefore \tag{1}
\end{array} \frac{d y}{d \theta}=2 \cos 2 \theta
$$

and

$$
y=\cos 2 \theta
$$

$\therefore \quad \frac{d y}{d \theta}=-2 \sin 2 \theta$
$\therefore \quad \frac{d y}{d x} \frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}, \quad \frac{d y}{d \theta} \neq 0$
$=\frac{2 \sin 2 \theta}{2 \cos 2 \theta}$
$=-\frac{x}{y}$
(vii) $y=\tan ^{-1}\left[\frac{4 x}{1+5 x^{2}}\right]$
$=\tan ^{-1}\left[\frac{5 x-x}{1+(5 x)(x)}\right]$
$=\tan ^{-1}(5 x)-\tan ^{-1} x\left[\because \tan ^{-1} a-\tan ^{-1}\left(\frac{a-b}{1+a b}\right)\right]$
Differentiating w.r.t.x

$$
\therefore \frac{d y}{d x}=\frac{1}{1+x^{2}}(5)-\frac{1}{1+x^{2}}=\frac{5}{1+25 x^{2}}-\frac{1}{1+x^{2}}
$$

(viii) Given $\mathrm{C}=x^{3}-16 x^{2}+47 x$
\therefore Average $\operatorname{cost} \mathrm{C}_{A}=\frac{C}{x}$

$$
\mathrm{C}_{A}=x^{2}-16 x+47
$$

Differentiating w.r.t.x

$$
\frac{d \mathrm{C}_{A}}{d x}=2 x-16
$$

Now C_{A} is decreasing if $\frac{d \mathrm{C}_{A}}{d x}<0$
that is $2 x-16<0$
$\therefore \quad x<0$
Average cost is decreasing for $x<8$

Ans: 2. (A) (i) Converse : If the farmers are happy then the monsoon is good.
Contrapositive : If farmers are not happy then the monsoon is not good.
Inverse : If monsoon is not good then farmers are not happy.
(ii)

p	q	$\mathrm{q} \rightarrow \mathrm{p}$	$\mathrm{P} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$
T	T	T	T
T	F	T	T
F	T	F	T
F	F	T	T

$\sim P$	$\sim P \mathrm{vq}$	$\sim p \rightarrow(\sim p \vee q)$
F	T	T
F	F	T
T	T	T
T	T	T

From the above truthtable,since the truth values are identical,the statements are equivalent.
(iii) $\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x$

Now $\frac{2 x-1}{(x-1)(x+2)(x-3)}$
$=\frac{A}{(x-1)}+\frac{A}{(x+2)}+\frac{c}{(x-3)} . .(\propto)$
$2 \mathrm{x}-1=\mathrm{A}(x+2)(x-3)+B(x-1)(x-3)$
$+C(x-1)(x+2)$
Putting $x=1$ in equation (i), we get $A=\frac{-1}{6}$
Putting $x=-2$ in equation (i), we get $B=\frac{1}{3}$

Putting $x=3$ in equation (i), we get $c=\frac{1}{2}$
Substituting the values of A, B, and C in equation (\propto), we get
$\frac{2 x-1}{(x-1)(x+2)(x-3)}=\frac{\frac{-1}{6}}{(x-1)}+\frac{-\frac{1}{3}}{(x-2)}+\frac{\frac{1}{2}}{(x-3)}$
$\int \frac{2 x-1}{(x-1)(x+2)(x-3)}$
$=\frac{-1}{6} \int \frac{d x}{(x-1)}-\frac{1}{3} \int \frac{d x}{(x-2)}+\frac{1}{2} \int \frac{d x}{(x-3)}$
$=\frac{-1}{6} \log |x-1|-\frac{1}{3} \log |x+2|+\frac{1}{2}|x-3|+c$
(B)
(i) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{8 x}-e^{5 x}-e^{3 x}+1}{\cos 4 x-\cos 10 x}$,
$=\lim _{x \rightarrow 0} \frac{e^{5 x}-\left(e^{3 x}-1\right)-\left(e^{3 x}-1\right)}{-2 \sin \left(\frac{4 x+10 x}{2}\right) \cdot \sin \left(\frac{4 x-10 x}{2}\right)}$
$=\lim _{x \rightarrow 0} \frac{\left(e^{5 x}-1\right)\left(e^{3 x}-1\right)}{+2 \sin 7 x \cdot \sin 3 x}$
Dividing numerator and denominator by x^{2}

$$
\begin{aligned}
&= \lim _{x \rightarrow 0} \frac{\frac{e^{5 x}-1}{5 x} 5 \cdot \frac{e^{3 x}-1}{3 x} \cdot 3}{2 \frac{\sin 7 x}{x} \cdot \frac{\sin 3 x}{x}} \\
&=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\frac{e^{5 x}-1}{5 x} 5 \cdot \frac{e^{3 x}-1}{3 x} \cdot 3}{2 \frac{\sin 7 x}{x} \cdot 7 \frac{\sin 3 x}{x} \cdot 3} \\
&=\frac{1}{2} \frac{5 \log e .3 \log e}{7(1) \cdot 3(1)} \\
&=\frac{1}{2} \times \frac{15}{21}=\frac{15}{42}=\frac{5}{14} \\
& \therefore f(0)=\frac{5}{14} \\
& \therefore f(0) \neq \lim _{x \rightarrow 0} f(x)
\end{aligned}
$$

Hence $f(x)$ is discontinuous at $x=0$
(ii) $y=\sqrt{\frac{(3 x-4)^{3}}{(x+1)^{4}(x+2)}}$
taking logarithm of both the sides, we get

$$
\begin{aligned}
\log y & =\frac{1}{2}\left[\log \frac{(3 x-4)^{3}}{(x+1)^{4}(x+2)}\right] \\
\log y & =\frac{1}{2}[3 \log (3 x-4)-4 \log (x+1)-\log (x+2)]
\end{aligned}
$$

Differentiating both sides with respect to x ,

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left[3 \cdot \frac{3}{3 x-4}-4 \cdot \frac{1}{x+1}-\frac{1}{x+2}\right] \\
& \therefore \frac{d y}{d x}=\sqrt{\frac{(3 x-4)^{3}}{(x+1)^{4}(x+2)}} \times \frac{1}{2}\left[\frac{9}{3 x-4}-\frac{4}{x+1}-\frac{1}{x+2}\right]
\end{aligned}
$$

(iii) $\quad \int_{-a}^{a} \frac{a-x}{\sqrt{a^{2-x^{2}}}} \mathrm{dx}$
$=\int_{-a}^{a} \frac{a-x}{\sqrt{a^{2-x^{2}}}}$
$=\int_{-a}^{a} \frac{a-x}{\sqrt{a^{2-x^{2}}}}$

SECTION - II

Ans. 4 (i) (a) $P(X<1)=P(X=0)=0.1$
(b) $\quad P(X \geq 3)=P(X=3)+P(X=4)$

$$
=0.15+0.25=0.4
$$

(c) $\quad P(1<X<4)=P(X=2)+P(X=3)$

$$
=0.3+0.15=0.45
$$

(d) $P(2<X<3)=P(X=2)+P(X=3)$

$$
=0.3+0.15=0.45
$$

(ii) $3 x-36>0 \Rightarrow 3 x>36$

$$
\Rightarrow x>12
$$

\therefore Solution Set is $(12, \infty)$
(iii) Let x kg of zinc be added.
\therefore From the given condition we get
$\frac{\frac{37}{100}(400)+x}{400+x}=\frac{70}{100}$
$\therefore \frac{148+x}{400+x}=\frac{7}{10}$
$\therefore \quad 10(148+\mathrm{x})=7(400+\mathrm{x})$
$\therefore \quad 1480+10 x=2800+7 x$
$\therefore \quad 3 \mathrm{x}=2800-1480$
$\therefore \quad 3 \mathrm{x}=1320$
$\therefore \quad \mathrm{x}=440$
$\therefore \quad 440 \mathrm{~kg}$ of zinc is added.
(iv) $3: x=13: 104$
i.e. $\frac{3}{x}=\frac{13}{104} \Rightarrow x=\frac{3 \times 104}{13}$
$=24$
(v) Policy value $=₹ 2,00,000$

Rate of premium $=₹ 35$ per thousand p.a
\therefore Amount of premium $=\frac{35}{1,000} \times 2,00,000$
= ₹ 7,000
Rate of commission $=15 \%$
\therefore Amount of premium $=7,000 \times \frac{15}{100}$

$$
=₹ 1,050
$$

(vi) Total no. of deaths $=\sum D i=900$
$\sum P i=9000+25000+32000+9000=75,000$
$\mathrm{CDR}=\frac{\sum D i}{\sum P i} \times 1000$
$=\frac{900}{75000} \times 1000=12$
(vii) From the given p.m.f. the probability distribution of x is
$\therefore \mathrm{E}(\mathrm{x})=\sum x . P(x)$
$=-0.4+0+0.2+0.2=0$
(viii) The order in which the jobs should be processed

4	1	3	2	5	6

Ans.. 5 (A) (i) Since amount ₹ 2000 is deposited at the end of every quarter.
\therefore It is an immediate annuity
Given $\mathrm{C}=₹ \mathbf{2 , 0 0 0}$
\therefore rate of interest is 8% p.a
\therefore rate of interest per quarter $=\frac{8}{4}=2$
$\therefore \mathrm{r}=2 \% \quad \therefore \mathrm{I}=\frac{r}{100}=0.02$
$n=$ no. of quarters $=1 \times 4=4$
$\therefore \mathrm{n}=4$
Using formula of accumulated value A
$\mathrm{A}=\frac{c}{i}\left[(1+i)^{n}-1\right]$
$=\frac{2000}{0.02}\left[(1+0.02)^{4}-1\right]$
$=1,00,000\left[(1.02)^{4}-1\right]$
$=1,00,000[1.024-1]$
= 1,00,000 [0.0824]
$=8240$
\therefore Accumulated amount at the end of 1 year is ` 8240 .
(ii) $\quad l_{4}=60, L_{4}=45$.

$$
P_{4}=?
$$

$L_{x}=\frac{l_{x+l_{x+1}}}{2}$
$\therefore L_{4}=\frac{l_{4+l_{5}}}{2}$
$\therefore 45=\frac{60+l_{5}}{2}$
$\therefore 60+l_{5}+90$
$\therefore l_{5}=30$

Again $\mathrm{dx}=l_{x+l_{x+}, 1}$,
$\therefore \quad d_{4}=60-30=30$
We have $P_{x}=1-9_{x}$
$\therefore P_{4}=1-9_{4}$
$=1-\frac{d_{4}}{l_{4}}\left(\therefore 9 x=\frac{d_{x}}{l_{x}}\right)$
$=1-\frac{30}{60}=1-0.5$
$\therefore P_{4}=0.5$
(iii) Step 1 : Note that the number of rows is not equal to number of columns of the above matrix. So the problem us unbalanced. It is balanced by unbalanced. It is balanced by introduction of a dummy job IV with zero cost. This step is done in Table

Subordinates	Jobs			
	I	II	III	IV
A	7	3	5	0
B	2	7	4	0
C	6	5	3	0
D	3	4	7	0

Step 2: "Minimum element of each row is subtracted from every element in that row." Since zero is minimum element for each row, the resultant new matrix is same as given table

Step 3 : " Minimum element in each column is subtracted from every element in that column".

Subordinates	Jobs			
	I	II	III	IV
A	5	0	2	0
B	0	4	1	0
C	4	2	0	0
D	1	1	4	0

Step 4 : "Zero elements are covered with minimum number of straight lines"

Subordinates	Jobs				
	I	II	III	IV	
A	5	9	2	0	
B	0	4	1	0	
C	4	2	0	0	
D	1	1	4	0	

Since number of lines covering all zeros is equal to number of rows / columns, the optimal solution has reached.

Optimal assignment can be made as shown in Table

Subordinates	Jobs				
	I	II	III	IV	
A	5	0	2	\forall	
B	0	4	1	\forall	
C	4	2	4	θ	
D	1	1	0	0	

Note that each row, each column contains one assigned zero.So the solution is optimal. Neglecting the assignment of subordinate D to dummy job IV, the following optimal assignment is obtained.

Subordinates	Jobs	Effectiveness
A	II	3
B	I	2
C	III	3

The total (minimum) effectiveness is $=3+2+3=8$ units.
(B) (i) From given data, the LPP is formulated as

Minimize $z=4 x+6 y$
Subject to $x+2 y+\geq 80$.
$3 x+y \geq 75$.
$x \geq 0, y=0$

Inequation	Equation	\boldsymbol{x}	\boldsymbol{y}	Point	Region
$x+2 y \geq 80$	$x+2 y=80$	0	40	$(0,40)$	Non - origin
		80	0	$(80,0)$	
$3 x+y \geq 75$	$3 x+y=75$	0	75		
		25	0	$(0,75)$	Non - origin
				$(25,0)$	

$z=4 x+6 y$
At A $(80,0) \quad z=4(80)+6(0)$
$=320$
At C $(0,75)$

$$
\begin{aligned}
& z=4(0)+6(75) \\
= & 450
\end{aligned}
$$

At $\mathrm{B}(14,33) \quad z=4(14)+6(33)$
$z=56+198=254$
The value of z is minimum at $B(14,33)$
$\therefore 14$ Units of chemical A and 33 units of chemical Should be produced.
(ii) Here, we need to obtain line of regression of X on Y which can be expressed as
$\mathrm{X}=a^{\prime}+b_{x y} \mathrm{Y}$
Where $b_{x y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{y}}$
$=r \frac{\sigma_{x}}{\sigma_{y}}$
$=0.8 \frac{(3.6)}{(25)}$
$=0.1152$
and $\quad a^{\prime}=\bar{x}-b_{x y} \bar{y}$
$=7.6-(0.1152)(14.8)$
$=5.89504$
\therefore Line of regression of X on Y is
$X=5.89504+0.1152 Y$
Estimate of X for $Y=10$ is
$X=5.89504+0.1152 Y$
$X=7.04704$
(iii) Let x Length (cm) and $\mathrm{y}=$ weight (gm)

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{x y}_{\boldsymbol{i}}$	$\boldsymbol{x}^{\mathbf{2}}{ }_{\boldsymbol{i}}$	$\boldsymbol{x}^{\mathbf{2}} \boldsymbol{i}$
3	9	27	9	81
4	11	44	16	121
6	14	84	36	196
7	15	105	49	225
10	16	160	100	256
30	65	420	210	879

$$
\sum x_{i}=30, \sum y_{i}=65, \sum x_{i} y_{i}=420
$$

$\sum x^{2}=210, \quad \sum y^{2}=879$.
$\bar{x} \quad \frac{\sum x_{i}}{n}=\frac{30}{5}=6 \quad \bar{y} \quad \frac{\sum x_{i}}{n}=\frac{60}{5}=13$
$r=\frac{\frac{1}{n} \sum x_{i} y_{i} \bar{x} \bar{y}}{\sqrt{\frac{\sum x^{2}}{n}}-x^{-2} \sqrt{\frac{\sum y^{2}}{n}}-y^{-2}}$
$=\frac{\frac{1}{5}(420)-(6)(13)}{\sqrt{\frac{210}{5}}-(6)^{2} \sqrt{\frac{879}{5}}-(13)^{2}} \quad=\frac{84-78}{\sqrt{42.36} \cdot \sqrt{175.8-169}}$
$=\frac{6}{\sqrt{6} \cdot \sqrt{6.8}}=\frac{6}{\sqrt{40.8}}=\frac{6}{\sqrt{6.3874}}=0.93934$
Q.6. (A)
(i) $\mathrm{CDR}=\frac{\sum D i}{\sum p i} \times 1000$

For population A :
$\sum D_{i}=170+115+490+630$
$=1405$
$\sum P_{i}=13+20+52+22$
$=107$ (in thousands)
CDR for population A denoted by $\mathrm{CDR} R_{A}$ is
$C D R_{A}=\frac{\sum D i}{\sum p i} \times 1000$
$=\frac{1405}{107000} \times 1000$
$=13.13$ per thousand.
for population B :
$\sum D_{i}=510+130+570+680$
$=1890$
$\sum D_{i}=15+35+54+23$
$=127$ (in thousands)
$\therefore \mathrm{CDR}$ for population B denoted by CDR_{B} is,
$C D R_{B}=\frac{\sum D i}{\sum p i} \times 1000$
$=\frac{1890}{127000} \times 1000$
$=14.88$ per thousand.
observe that population A is more healthy than population B as $\mathrm{CD} R_{A}<\mathrm{CD} R_{B}$.
(ii) Let the equation $2 x+3 y-6=0$ be equation of Y on X .
$\therefore 3 y=-2 x+6$
$\therefore y=\frac{2}{3} x+2 \quad \therefore b_{y x}=-\frac{2}{3}$
Another equation $5 x+7 y-12=0$ be the eq"of X on Y
$\therefore x=-\frac{7}{5} \mathrm{y}+-\frac{12}{5} \quad \therefore b_{y x}=-\frac{7}{5}$
Correlation coefficient $\mathrm{r}= \pm \sqrt{b_{y x} \cdot b_{x y}}$

$$
\begin{aligned}
= & \pm \sqrt{\left(-\frac{2}{3}\right)\left(-\frac{7}{5}\right)} \\
& = \pm \sqrt{\frac{14}{15}} \quad=\sqrt{0.9333}=-0.96607
\end{aligned}
$$

$\therefore \mathrm{r}=0.96607$
To Calculate $\frac{\sigma_{x}}{\sigma_{y}}$ we know that

$$
\begin{aligned}
& b_{x y}=\mathrm{r} \frac{\sigma_{x}}{\sigma_{y}} \quad \therefore-\frac{7}{5}=0.96607 \frac{\sigma_{x}}{\sigma_{y}} \\
& \frac{\sigma_{x}}{\sigma_{y}}=\frac{7}{3(0.96607)}=\frac{7}{2.89821}=2.4152
\end{aligned}
$$

(iii) Here $\min M_{1}=3, \min M_{3}=5$ and $\max M_{2}=5$.

Since $\min M_{3} \geq \max M_{2}$ is satisfied, the problem can be converted into 7 job 2 machines problem. Thus if G and H are the two fictitious machines such that

$$
\mathrm{G}=M_{1}+M_{2}
$$

and

$$
\mathrm{H}=M_{2}+M_{3}
$$

then the problem can be written as the following 7 job and 2 machines problem.

Job	A	B	C	D	\mathbf{E}	F	G
Machine G	7	11	9	9	10	12	10
Machine H	10	10	7	16	6	10	15

Using the optimal sequence algorithm, the following optimal sequence can be obtained.

A	D	G	F	B	C	E

For total elapsed time, we have
Total elapsed time T = 59 hrs
Idle time for machines
$M_{1}=59-46=13 \mathrm{hrs}$
$M_{2}=59-22=37 \mathrm{hrs}$.
$M_{3}=59-52=07 \mathrm{hrs}$.
(B) (i) Let the fixed monthly salary = ₹ $x \quad$ Rate of commission $=\mathrm{r} \%$
\therefore Income $=$ salary $+64000 \times \frac{r}{100}$
Also Income $=$ salary $+72000 \times \frac{r}{100}$
$\therefore 10650=x+640 r$
$11450=x+7250 r$
By taking (2) - (1)

$$
\begin{aligned}
& \therefore 800=80 r \\
& \therefore r=10
\end{aligned}
$$

Putting this value in eqn (1) we get

$$
\begin{aligned}
& \therefore 10650=x+640(10) \\
& \therefore 10650=x+6400 \\
& \therefore x=10650-6400=4250 ₹
\end{aligned}
$$

(ii) Let us give ranks to values of X and Y assigning rank 1 to the highest values and next highest be ranked 2 etc.

\mathbf{X}	\mathbf{Y}	Rank of \mathbf{X} $\boldsymbol{x}_{\boldsymbol{i}}$	Rank of \mathbf{Y} $\boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}=} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}{ }^{\mathbf{2}}$
50	110	8	9.5	-1.5	2.25
55	110	6.5	9.5	-3.0	9.00
65	115	3.5	7	-3.5	12.25
50	125	8	4	4.0	16
55	140	6.5	2	4.5	20.25
60	115	5	7	-2.0	4.00
50	130	8	3	5.0	25
65	120	3.5	5	-1.5	2.25
70	115	2	7	-5.0	25
75	160	1	1	0.0	0.00
				Total	116.00

Here, in series $X, 50$ is repeated thrice, 55 is repeated twice. 65 is repeated twice, In series. In series Y 110 is repeated twice and 115 is repeated thrice.

$$
\begin{aligned}
\therefore & T_{x}=\frac{3\left(3^{2}-1\right)}{12}+\frac{2\left(2^{2}-1\right)}{12}+\frac{2\left(2^{2}-1\right)}{12}=3 \\
& T_{y}=\frac{2\left(2^{2}-1\right)}{12}+\frac{3\left(3^{2}-1\right)}{12}=2.5
\end{aligned}
$$

Corrected $\sum d_{i}{ }^{2}=\sum d_{i}{ }^{2}+T_{x}+T_{y}$

$$
\begin{gathered}
=116+3+2.5 \\
=121.5 \\
\therefore \quad \mathrm{R}=1-\frac{6\left[\text { corected } \sum d_{i}{ }^{2}\right]}{n\left(n^{2}-1\right)} \\
=1-\frac{6 \times 121.5}{10\left(10^{2}-1\right)} \\
=1-\frac{729}{990} \quad=\frac{268}{990}=0.26
\end{gathered}
$$

(iii) Let $x=$ No. of members successfully treated.
$p=$ Probability that treatment is effective.
$\therefore p=70 \%=0.7$
$q=1-p=1-0.7=0.3 . n=4$
(i) Exactly two members are successfully treated.

$$
\begin{aligned}
& \mathrm{P}[\mathrm{X}=2]=n_{C_{x}} p^{x} q^{n}-x \\
& \therefore \mathrm{P}[\mathrm{X}=x]=4_{C_{2}}(0.7)^{2}(0.3)^{4-2} \\
& =\frac{4 \times 3}{2 \times 1} \times 0.49 \times 0.09 \\
& =6 \times 0.49 \times 0.09=0.49 \times 0.54=0.2646
\end{aligned}
$$

(ii) At least one member is successfully treated.

$$
\begin{aligned}
& \therefore P[X \geq 1]=1-P[X=0] \\
& =1-4_{C_{0}}(0.7)^{0}(0.3)^{4} \\
& =1-1 \times 1 \times 0.0081 \\
& =1-0.0081=0.9919
\end{aligned}
$$

(iii) All are successfully treated.

$$
\begin{aligned}
& P[X=4]=4_{C_{4}}(0.7)^{4}(0.3)^{4-4} \\
& =1 \times 0.2401 \times 1 \\
& =0.2401
\end{aligned}
$$

